
CO421 - Presentation

Accelerating Adaptive Banded Event Alignment 
Algorithm on FPGAs using OpenCL

Group 07
E/15/123 Wishma Herath
E/15/280 Pubudu Premathilaka
E/15/316 Suneth Samarasinghe

Supervisors
Prof. Roshan Ragel

Mr. Hasindu Gamaarachchi (UNSW)



Genome : a long sequence composed of four types of nucleotide 
bases
4 Bases : adenine (A), cytosine(C), guanine (G) and thymine (T)
Sequencing : the process of reading strings of contiguous bases
Reads : the resulting strings of bases from sequencing

Terminology



Introduction



DNA sequencing is the most powerful method to 
reveal genetic variations at the molecular level

“
”

The process of determining precise order of 
Nucleotides within a DNA molecule



• An enzyme unwinds DNA feeding one strand through a 
nanometer size protein pore.

• Unique shapes of DNA bases cause disruption in electrical 
current

Oxford Nanopore Sequencing Technology (ONT)



• Base calling
• Sequence alignment
• Downstream analysis (Polishing)

• Methylation calling: 
• Events detection
• Signal space alignment
• Hidden Markov model

Suzuki-Kasahara

NanopolishABEA

Oxford Nanopore Sequencing Technology (ONT)



Problem Definition



ABEA is one of the most time consuming steps 
when analyzing raw nanopore data

~70%        . 
of the total CPU time



Original ABEA 

Nanopore long reads can be >1M bases long

>1012 computations
Hundreds of GB of RAM

Takes ~ 48-64 hours

A fine-tuned version of ABEA is used in a recent work (called f5c by 
Hasindu Gamaarchchi et al.) - an optimized version of nanopolish to run 
on general purpose GPUs and CPUs.



FPGAs are more power efficient relative to GPUs and provides 
reasonable performance for HPC
Literature suggests to do a Hardware-software codesign to get 
the best performance

Codesign 
tools

CPU FPGA

According to the literature



Related work (literature review)



Takeaways from FPGA based accelerations using 
OpenCL (1/5)
From SWIFOLD by Rucci et al., 2018 

● Use of smaller data types for kernel(Eg: ALMs Usage: int(32 bit) 89%, short(16-bit) 

52%)

● Larger pipelines

● In SWIFOLD, regardless of the sequence length and sequence similarity they have 

achieved higher average performance

● The exploitation of OpenCL memory hierarchy has offered a considerable benefit in 

performance.



Takeaways from FPGA based accelerations using 
OpenCL (2/5)
From SW Protein Search by Rucci et al., 2015

● Data level parallelism

From KNN implementation by Fahad et al., 2016

● FPGA offers better power/ energy efficiency compared to GPU implementation



Takeaways from FPGA based accelerations using 
OpenCL (3/5)
Design of FPGA-based computing systems with openCL by Waidyasooriya et al., 2017

● Performance improvement techniques for NDRange kernels

○ Specifying the Work-Group Size (Compiler level optimization)

○ Kernel Vectorization (SIMD)

○ Increasing the Number of Compute Units



Takeaways from FPGA based accelerations using 
OpenCL (4/5)
Design of FPGA-based computing systems with openCL by Waidyasooriya et al., 2017

● Performance improvement techniques for Single Work Item kernels

○ Avoiding Nested Loops

○ Reducing Initiation Interval Due to Read-Modify-Write Operations to Global 

Memory

○ Ignore Loop-Carried Dependencies 



Takeaways from FPGA based accelerations using 
OpenCL (5/5)
Design of FPGA-based computing systems with openCL by Waidyasooriya et al., 2017

● Common performance improvement techniques 

○ Use of Loop unrolling

○ Inserting  the ‘restrict’ keyword in pointer arguments whenever possible



Implementation



Implementation Choices 
● OpenCL

○ OpenCL allows a programmer to use various compute devices(FPGA,GPU,CPU)

○ HDL is a time consuming and more complex. Therefore, HLS tools are favourable

○ Most of the HLS tools does not support interface between FPGA and CPU. Designer still 

needs to use HDL to design interface circuit

○ OpenCL allows designers to describe whole computation: computation on the host, data 

transfer between the host and accelerators, and computation on accelerators

○ Board Support Package(BSP) facilitates to use the same OpenCL code to different FPGA 

boards

● FPGA
○ Efficient power consumption when working as an accelerator

○ Reconfigurable hardware provides more flexibility



Tools, devices and technologies
• Altera Stratix V GX (DE5-NET)

• Intel FPGA SDK for OpenCL

• Intel SDK for OpenCL

• Quartus Prime

• Visual Studio



Implementation (1/2)

Input:
ref [] : base-called read (1D char array)
model : pore-model
events [] : the output of the event detection step

Output:
alignment [] : list of {event index, k-mer index}

ABEA



Implementation (2/2)
Phase 1 (Related to F5c)

● Flow of Execution

INPUT: Batch of 
Reads Execute Kernels Copy results 

back to the host
Copy Inputs to the 

FPGA memory

● Alignment function is divided into 3 kernels:
1. Pre-Kernel : Initialising the first two bands of the dynamic programming 

table and pre-computing frequently accessed values by the next kernel.
2. Core-Kernel : The filling of the dynamic programming table which is the 

compute intensive portion of the ABEA algorithm.
3. Post-Kernel : Performs backtracking.

● Memory Pre-allocation



Evaluation



Experimental setup

PLATFORM NAME Intel(R) FPGA SDK for 
OpenCL(TM)

PLATFORM VERSION Version 18.0

CPU Intel Core i5-4200H 2.80GHz x 2

RAM (GB) 12

DEVICE NAME Emulated Device

DEVICE VERSION OpenCL 1.0 Intel(R) FPGA SDK 
for OpenCL(TM), Version 18.0

DEVICE MAX CLOCK 1000 MHz

DEVICE GLOBAL MEM 
SIZE 12 GB

DEVICE MAX CU 1

Host specifications Device specifications 



Dataset

Dataset Number of reads Number of bases
Mean read length 
(Bases)

Max read length 
(Bases)

testset 143 819102 5727 12618

Publicly available reads that aligned to a 2kb region in the E. coli draft assembly

Sample E. coli str. K-12 substr. MG1655
Instrument MinION sequencing R9.4 chemistry
Basecaller Albacore v2.0.1
Region ”tig00000001:200000-202000”
Note Ligation-mediated PCR amplification performed



Kernel Execution time (s) Percentage
Pre-kernel 0.125 0.008%
Core-kernel 1501.740 99.922%
Post-kernel 1.045 0.070%

Execution time (1/2)
OpenCL implementation on Intel FPGA emulator

Explanation 
The Core-kernel takes the longest time of around 99.9% of the total execution time 
since it is the most compute intensive step



Implementation Total execution time (s)
OpenCL implementation on DE5net FPGA Emulator 1503.126
CPU implementation on Host PC 6.187

Execution time (2/2)

Explanation 
Intel FPGA emulator has limited resources such as 1 GHz maximum clock 
frequency and one compute unit(CU) compared to a physical FPGA hardware.
Since the PC acts as both the Host and the Emulator Device, the resources are 
allocated for both host platform and the emulator device.

around 240x slowdown



Comparison with CPU implementation



Output

reference position read position

x1 y1

x2 y2

x3 y3

... ...

Per read:
N: number of event align pairs

N





Explanation 
Almost all reads gives exact same no. of event align pairs for both OpenCL 
implementation and CPU implementation. Others with deviation of 1-6. 
Only for 139th read has a deviation of 95. For now we suspect it is due to the 
floating point precision difference. In the next phase we hope to identify the reasons 
for this deviations.



139th read



Further justification

● Emulator run uses floating point computation hardware of the CPU whereas 
the hardware run uses floating point cores implemented as FPGA cores.

● The emulation of channel behavior has limitations, In such cases, the 
Emulator might execute channel operations in an order different from that 
on the hardware.
(especially for conditional channel operations where the kernel does not call 
the channel operation in every loop iteration)

● Difference in channel depths might lead to execution on the hardware 
hangs while kernel emulation works without any issue.

Source: Intel ® FPGA SDK for OpenCL ™ Standard Edition Programming Guide



Conclusion and Future Directions



Conclusion
● ABEA algorithm is a key component in nanopore data analysis

● f5c has been fine-tuned to run on CPUs/GPUs

● Accelerations using FPGAs has a lower power requirement relative to GPUs

● The portable version of f5c can be superior to deploy in many hardware platforms



Adapt the hardware design into an embedded device to 
perform event alignment in real-time

“
”

Future Directions

Include the OpenCL implementation into nanopolish 
package



Work Progress



Timeline
● Semester 7 progress and timeline



● Evaluate performance on Altera Stratix V FPGA and compare with f5c

● Improve performance on FPGA through optimization techniques identified from 

literature review

● Deploy on different hardware platforms such as CPU, GPU and evaluate 

performance

Plan for Semester 8



Q & A


